Halo’s Map Files (Revision 1.3.1)

This guide describes Halo's cache files and resource map structure. | don't go over tag class structure
here as this would not only take forever to come up with and | don’t have time, but it'd end up being
hundreds of pages.

Table of Contents

Table of Contents
Cache Files
Header
Halo Demo Header
Tag Data
Tag IDs
Tag
Tag Reference
Reflexive
Legacy Parsing
Resource Maps
Header
Resource Index

Data Types

a >~ w DN

(o))

o N

10
11
11

12

Cache Files

These files are referred to as cache files because contain data that is loaded directly into a location in
Halo’s memory with pointers and everything intact. All data is stored in this file in little endian. In Xbox
cache files, everything after the header is stored in a DEFLATE stream.

Header B5SPs Raw data (if present) Model data Tag data

This is a diagram of the cache file structure in the order output by tool.exe. All cache files start with a
map header. This header is exactly 2048 bytes in length.

Directly after the map header are the BSPs of the map. At least one BSP is required for the map to be
playable. This block is not directly referenced by any part of the map, but rather the file offsets are
referenced in the scenario tag. The BSP tags in the tag index are, in fact, placeholders.

After BSPs are any internalized sound and bitmaps (raw data). Halo PC stores all stock bitmaps and
sounds in bitmaps.map and sounds.map, so this section will not be present on stock maps. Like BSPs,
the block itself is not directly referenced by any part of the map - Halo just uses file offsets referenced in
the bitmaps and sound tags. Custom maps may have lightmaps stored here and any custom textures. In
some custom maps, this can be the largest section, taking up hundreds of megabytes.

Right after raw data is models. Models are required for any model tags, and all stock maps store their
maps here, but any maps that don’t have model tags will not have this block. This block is directly
referenced by the tag data header and is separated by vertices and indices.

While tool.exe outputs Halo files in this exact order, all that is required is that the map header to be at the
beginning of the cache file. Everything else can be any order and as long as Halo can find everything it
needs, the map will be functional.

Halo Custom Edition will calculate the CRC32 of the map file using the BSP data, model data, and tag
data. When joining a Halo Custom Edition server, there is a challenge packet that can only be answered
using the correct CRC32 value. Otherwise, the player will not be permitted into the game.

Header

All cache files contain a header that is 2048 bytes in length at the start of the map file. Most of this data
is simply empty space that is ignored which can be used for storing arbitrary metadata, if desired.

Offset Data Type Usage

0x0 uint32 Integrity - Must equal 0x68656164 (‘head’)

0x4 uint32 Game engine - 0x7 if retail, 0x261 if custom edition, 0x5 if Xbox

0x8 uint32 Map file size (decompressed) - Must be less than 0x38400000

0xC char[4] Unused

0x10 uint32 Tag data offset

0x14 uint32 Tag data size

0x18 char[8] Unused

0x20 char[32] Map name - Must be null terminated; can be buffer overflowed to map build
to extend name 32 chars on PC (encoding is ISO 8859-1)

0x40 char[32] Map build - Unused except on Xbox (encoding is ISO 8859-1)

0x60 uint16 Map type - 0x0 if campaign, 0x1 if multiplayer, 0x2 if user interface

0x62 char[2] Unused

0x64 uint32 ~CRC32 of map’s BSP, model data, and tag data - Unused

0x68 char[1940] Unused

0x7FC uint32 Integrity - Must equal 0x666F6F74 (‘foot’)

Halo Demo Header

The demo version of the game uses a different order of data likely to prevent maps from the retail version
of the game from being directly loaded. Like with the standard header, any unused data can be used for
arbitrary data, if desired. The demo version actually fills it up with random garbage data, anyway.

Offset Data Type Usage

0x0 char|2] Unused

0x2 uint16 Map type - 0x0 if campaign, 0x1 if multiplayer, 0x2 if user interface
0x4 char[700] Unused

0x2C0 uint32 Integrity - Must equal 0x45686564 (‘Ehed’)

0x2C4 uint32 Tag data size

0x2C8 char[32] Map build - Unused (encoding is ISO 8859-1)

0x2E8 char[672] Unused

0x588 uint32 Game engine - 0x6

0x58C char[32] Map name - Must be null terminated (encoding is ISO 8859-1)
0x5AC char[4] Unused

0x5B0 uint32 ~CRC32 of map’s BSP, model data, and tag data - Unused
0x5B4 char[52] Unused

Ox5E8 uint32 File size

Ox5EC uint32 Tag data offset

0x5F0 uint32 Integrity - Must equal 0x47666F74 (‘Gfot’)

0x5F4 char[524] Unused

Tag Data

This block of data is normally the last section of a cache file. It and the BSPs are essentially the cached
part of the cache file and are directly loaded into Halo’s memory with little modification afterwards.

This data is always copied to the memory address 0x40440000 on Halo PC (0x4BF10000 on demo,
0x803A6000 on Xbox), so if you want to resolve a pointer into an offset from the beginning of this block,
subtract the relevant memory address.

This is the structure of this header:

PC Xbox Data Type | Usage

0x0 0x0 Tag * Tag array pointer - Halo caches this upon map load.
0x4 0x4 Tag ID Principal scenario tag ID

0x8 0x8 uint32 Random number - Unused

0xC 0xC uint32 Tag count - Actual maximum tag count is 65535.
0x10 0x10 uint32 Model part count

0x14 - uint32 Model data file offset

- 0x14 void * Unknown; model data address maybe?

0x18 0x18 uint32 Model part count (again?)

0x1C - uint32 Vertex size (everything after the vertices is indices)
- 0x1C void * Unknown; index data address maybe?

0x20 - uint32 Model data size

0x24 0x20 uint32 Equals 0x74616773 (‘tags’) - Unused

Tag IDs

Tag IDs are used for identifying tags in tag references. Tag IDs are read as 32-bit integers when checking
if they are a null reference (OxFFFFFFFF) before being casted as a 16-bit integer. This means that up to
65536 tags can actually be referenced in a map.

Note that some references will not be checked if null. If they are null when they shouldn't, they will be
treated as pointing to a 65536th tag which will crash the game if such a tag doesn't exist.

Offset Data Type Usage

0x0 uint16 Tag index
0x2 uint16 Identifier - Unused outside of checking if null
Tag

The pointer to the tag array can be found in the header of the tag data block as well as the tag count. It
usually points to the data 40 bytes after the beginning of the tag data block (36 if on Xbox), or directly
after the header, but this can be changed in some map protection schemes.

Offset Data Type Usage

0x0 uint32 Tag class
0x4 uint32 Secondary tag class - Equals 0xFFFFFFFF if null - Unused
0x8 uint32 Tertiary tag class - Equals OxFFFFFFFF if null - Unused
0xC Tag ID Tag index
0x10 char * Tag path (encoding is ISO 8859-1)
0x14 void * Tag data - Does not apply to unloaded SBSP tags
void * Tag data stub - If tag data is in resource maps and tag is a sound, Halo will

retrieve the sound tag from sounds.map based on tag path.

uint32 Resource index - If tag data is in resource maps and tag is not a sound

0x18 uint32 Tag data is in resource maps. (CE only)

0x1C char[4] Unused

Tag Reference

Most tag classes reference other tags. For instance, a weapon has to have a model, a projectile, a
first-person model, some animations, etc.

Offset Data Type Usage

0x0 uint32 Tag class

0x4 char * Tag path - Unused

0x8 uint32 Unused

0xC Tag ID Tag index
Reflexive

These data structures contain pointers that point to other data in Halo’s memory, and it also contains the
number of objects in Halo's memory. It's usually within the tag data itself.

Offset Data Type Usage
0x0 uint32 Data count
0x4 void * Data address

0x8 uint32 Unused

Legacy Parsing

This is the “old” way that's used by older apps including Eschaton before this stuff was actually properly
mapped out. It's inefficient and inaccurate, but I'm including this to describe how some older map editors
parse map files

There are a few values that had to be calculated:

e Primary magic: This is the address to the tag array located at the beginning of the tag data block.
e Map magic = Primary magic - Offset to tag block - 0x28 (+ 0x4 if on Xbox)

To convert a pointer to an offset, you would subtract map magic from the pointer, and it would get you
your offset.

Using this method meant that the address of the tag data block (0x40440000 / 0x4BF10000) did not have
to be stored. While this meant that the same tag data parsing code could be used between demo and
retail versions, demo maps still had obfuscated headers, so it was pretty pointless. Also, this method
made it more complicated to do a bounds check to check if data was within the map file to prevent
memory corruption.

Now that all of this information is available on cache files, using this method to calculate the offsets of
pointers is not recommended.

Resource Maps

Exclusive to Halo PC are resource maps. These files are used to store asset data between maps in the
maps folder and are also using the extension .map, saving a large amount of space. They are not cache
files, and they use completely different header structures. In Custom Edition, some tag data is also stored

in resource maps.

10

They vary between versions of the game and are used to reduce space of map files. On Custom Edition,
they are also used to store localization data, allowing for a CE map to work on all languages of the game,
where on the standard retail version of the game, each map has to be compiled for its original language.

Xbox | Retail / Demo Custom Edition
Assets in cache files? Yes Optional Optional
Present? No Yes Yes
Maps - e bitmaps.map e bitmaps.map
e sounds.map e sounds.map
e loc.map
Required? - No Yes*
Holds tag data? - No Yes
Platform independent | -- No Usually
Bitmap naming scheme | - <tag>_<bitmap> <tag>**

<tag>__pixels

Sound naming scheme

<tag>__<range>__<permutation>

<tag>**
<tag>__permutations

Loc naming scheme

<tag>**

* Halo will crash when a map other than the stock ui.map is loaded in Halo Custom Edition, because resource files contain some of

the required tag data.

** This is for tag data. Halo Custom Edition alternates between tag data and bitmap/sound data in bitmaps.map and sounds.map,

respective.

11

Header

The header of a resource map is much smaller than that of a cache file at only 16 bytes in length versus
2048 bytes. There's no vast amounts of unused data. This doesn't seem to be used in retail or demo
versions of the game, as the maps themselves have offsets to data in the resource maps.

Offset Data Type Usage

0x0 uint32 Type (1 = bitmaps; 2 = sound; 3 = loc)
0x4 uint32 Resource paths offset

0x8 uint32 Resource index offset

0xC uint32 Resource count

Resource Index

Each of these defines an asset or tag used.

Offset Data Type Usage
0x0 uint32 Resource path offset from tag paths offset
0x4 uint32 Resource size

0x8 uint32 Resource data offset

Data Types

These are some basic types of data. Most data types are basic C types or primitives.

12

Data Type Definition

<X>* This is a pointer that points to data in Halo’s memory of type X. A pointer is
the same size as an unsigned 32-bit integer.

char[<X>] This is an array of X amount of characters.

tag This specifies an asset in a Halo cache file, such as a weapon, model,
bitmap, sound...

uint<X> This is an unsigned X-bit integer.

void This is an ambiguous type with any amount of bytes in length.

