Halo: Combat Evolved Map Structure

Snowy Mouse

<

Revision 2.1.2

This is a guide on the structure of the map files built for the game, Halo: Combat Evolved.
Games discussed are as follows:

» Xbox version - Halo: Combat Evolved on Xbox as released by Bungie

= Retail PC version - Halo: Combat Evolved as released by Gearbox (and MacSoft for
the Mac version)

= Demo version - Demo / Trial versions of the PC version of the game

» Custom Edition version - Halo Custom Edition on PC, an expansion to the PC version
that enables the creation of custom maps

= Anniversary version - Halo: Combat Evolved Anniversary on MCC (also known as
CEA)

This document will not discuss the Xbox 360 version of Halo: Combat Evolved Anniversary,

nor will it discuss betas of the game due to the fact that these are numerous and also outdated.
This document will also not discuss any community-created formats, as that would make it
difficult to maintain and update this document every time someone made another format or
updated an existing one.

This document will also not go over the structure of tags, themselves, as this would require
a lot of work as well as possibly hundreds of pages. If you actually need this information,
you can find an up-to-date set of definitions in the Invader repository which can be found
on GitHub at https://github.com/SnowyMouse/invader/

All information here is provided freely, but this work is licensed under a Creative Commons
Attribution 3.0 license (CC BY 3.0 US). For more information, you can read the license at
https://creativecommons.org/licenses/by/3.0/us/

Copyright © 2021 by Snowy Mouse

Halo: Combat Evolved Map Structure Snowy Mouse

<2

Contents
L__About the author 3
2 What is a map file?| 4
2.1 Resource maps|. L 4
[2.2 Halo: Combat Evolved Anniversary resource files| 4
(3 Data types| 5
[3.1 Now you're thinking with pointers|. 5
4 he file h 4 6
4.1 Header structurel 6
4.1.1 Demo header structurel 6
42 Cacheversions 7
[4.3 Resource map header structure| L. 7
431 R FCEl . . . 7
(4.4 Compressed cache files|. oL 8
[4.4.1 Xbox compression| 8
{4.4.2 CEA compression| 8
o Tag data 9
5.1 Tag data address and size| 9
b.2 BSP headerd 9
H r str FEl . . s 10
£.31 New header structurel oo 10
b.3.2 Xbox header structurelo 10
5.4 AL| . . . e 11

Page 2

Halo: Combat Evolved Map Structure Snowy Mouse

1 About the author

The author, Snowy, is a programmer who has worked on modding and fixing Halo: Combat
Evolved for over 14 years. She created the Chimera mod, a mod that fixes a number of
issues with the PC version of the game, including fixes that are still not present on MCC.
She also wrote a number of fixes for the Mac version of the game, having originally played
Halo: Combat Evolved through this exact version.

Snowy also created Invader, a project that aims to be a complete reimplementation of the
Halo Editing Kit that supports modern platforms while also remaining completely free (as

in libre). You can also find these projects at https://github.com/SnowyMouse along with a
number of other projects, including work on other games and systems as well as contributions
to open source projects such as Tutanota.

If you have any questions, comments, or other forms of feedback, the best way to contact
Snowy is by e-mailing contact@snowymouse.com as this address is almost always checked
daily.

You can also contact Snowy on Discord. Note that friend requests from strangers do not
usually get accepted. Instead, you should join a server she is in, first, and then contact her
from there. Here are some servers you can try:

Invader — https://discord.gg/RCX3nvw

Open Carnage — https://discord.opencarnage.net

Halo CE: Refined — https://discord.gg/QzSR2xNGzp

Halo CE Reclaimers — https://discord.reclaimers.net

Page 3

Halo: Combat Evolved Map Structure Snowy Mouse

2 What is a map file?

Map files are typically levels that the game loads. They are an archive of all of the tags
used for a specific scenario, and they are typically loaded at a specific memory address.
They also contain memory pointers that are valid once loaded.

Officially, maps use the .map extension on all versions of Halo, even including later versions
of the game.

2.1 Resource maps

The Windows and Mac versions of Halo: Combat Evolved, as released by Gearbox and
MacSoft, respectively, also includes two additional files with .map extensions: bitmaps.map
and sounds.map. Halo Custom Edition introduces a third file, loc.map. These are not actual
cache files and are not generally loaded directly by the game. Instead, the game uses it

to share data between maps. For the retail version, this is to save disk space. For Halo
Custom Edition, this is to provide basic localization so maps will appear to be the correct
language regardless of the language the user is playing. Consequently, Halo Custom Edition's
resource maps contain the actual tag data for bitmaps, sounds, strings, and fonts.

No other version of the game has resource maps presently. However, Halo: Combat Evolved
Anniversary on MCC does support loading Halo: Custom Edition maps (thus using these
three caches for loading such maps).

2.2 Halo: Combat Evolved Anniversary resource files

Halo: Combat Evolved Anniversary has its own system for loading bitmap and sound data
through ipaks and FSBs.

ipak is a format made by Saber Interactive. It is used for bitmaps in Halo: Combat Evolved
Anniversary maps if playing on Halo: Combat Evolved on MCC, and this applies to both the
anniversary graphics and classic graphics. Similar to bitmaps.map, it contains bitmap data.
However, unlike bitmaps.map, it does not always correspond to the actual tag data. For
example, a bitmap tag may claim to be 256x256 16-bit, but the bitmap in the ipak might
be larger, such as 512x512 with 32-bit color.

FSBs (FMOD sound bank, not front-side bus!) are a proprietary format for the FMOD

sound effects engine used by Halo: Combat Evolved Anniversary. Like sounds.map, it contains
sound data, and like ipak, this sound data does not correspond to tag data. As such, it can
be various formats (e.g. MPEG, Ogg Vorbis, PCM, ADPCM, etc.). Because FSBs do not
contain mouth data yet all languages of this version of the game had their maps built with
English tags, stock Halo: Combat Evolved Anniversary maps will only play English mouth
data even when on another language.

Page 4

Halo: Combat Evolved Map Structure Snowy Mouse

3 Data types

These are the various data types used in these structures. Everything in a cache file is little
endian (except for Xbox 360 CEA maps which are big endian, but these aren't discussed
here) with a word size of 32 bits. HEK tag files are big endian, but this document concerns
only the compiled cache files and not necessarily the files used to create them.

Type | Description

char | 8-bit signed character type (ISO 8859-1 encoding)

uintN | Unsigned integer of N bits (8 bits = 1 byte)

void | Ambiguous type

X[N] | Array of X containing N elements

X* Pointer of type X (same size as uint32 in a Halo: Combat Evolved cache file)

These are all based on C types, as this game and its tools are largely written in the C and
C++ languages. uint32 here, for example, is the same as the uint32_t type in the C standard
library header <stdint.h> (or std::uint32_t from <cstdint> on C++).

This document is written in such a way where you do not need to understand C or C++
to understand its contents. However, you do need to understand hexadecimal, and some
experience with using tools like a hex editor can be quite helpful here.

3.1 Now you’re thinking with pointers

One of the hardest concepts to grasp regarding these data structures is pointers and memory
addresses. An address is a number that refers to a location in memory, where a pointer

is a data field that holds an address. All addresses are unsigned integers, thus a pointer
technically holds an unsigned integer (i.e. uint32 since Halo: Combat Evolved cache files

are 32-bit).

For example, the tag array pointer is typically equal to 0x40440028, and 0x40440028 is the
address to the tag array when the map is loaded.

Imagine memory as a stack of cards. An address would work like this: 0 is the address of
the top card, 1 is the card below the top card, 2 is the card below that, and so on until
you get to 51 which is the bottommost card (in standard playing card decks of 52 cards).
This is basically how addresses work in memory, but instead of cards, it's bytes! In a 32-bit
address space, there are over 4 billion possible memory addresses (from 0x00000000 to
OxFFFFFFFF) that can technically be accessed. Not all of it is used at one point, but that
doesn't really matter for our purposes.

Page 5

Halo: Combat Evolved Map Structure

Snowy Mouse

4 Cache file header

The header of a cache file is composed of several fields, but it is always 2048 bytes in length
(including padding which is most of it), and it is always the start of a cache file.

4.1 Header structure

Offset | Type Name Description

0x0000 | uint32 | Magic Must be 1751474532 ("head")

0x0004 | uint32 | Cache version | Must match the game's cache version
0x0008 | uint32 File size Length of the map when uncompressed
0x000C | uint32 | Padding length | Padding after the map (Xbox only)
0x0010 | uint32 | Tag data offset | File offset of the tag data

0x0014 | uint32 | Tag data size File length of the tag data in bytes
0x0020 | char[32] | Scenario name | Must match filename (except in CEA)
0x0040 | char[32] | Build version Must match engine version in Xbox
0x0060 | uintl6 | Scenario type Determines which cache to use on Xbox*
0x0064 | uint32 Checksum CRC32 of the BSP data, model data, and tag data
0x07FC | uint32 | Magic Must be 1718579060 ("foot”)

*See Compressed cache files

4.1.1 Demo header structure

The header structure was changed on the demo version. This was likely to prevent the
demo version of the game from loading full version maps. To make it even harder, the
base memory address was changed as well, and this will be discussed in a later section.
The padding in demo maps was also filled with garbage, and the "padding length” field
was removed due to being unused on PC (or it was filled with garbage as well, thus it's

impossible to find it).

Offset | Type Name Description

0x02C0 | uint32 | Magic Must be 1164469604 ("Ehed")

0x0588 | uint32 Cache version | Must match the game's cache version
0x05E8 | uint32 File size Length of the map when uncompressed
0x0010 | uint32 | Tag data offset | File offset of the tag data

0x02C4 | uint32 Tag data size File length of the tag data in bytes
0x058C | char[32] | Scenario name | Must match filename (except in CEA)
0x02C8 | char[32] | Build version Must match engine version in Xbox
0x0002 | uintl6 | Scenario type Determines which cache to use on Xbox*
0x05B0 | uint32 Checksum CRC32 of the BSP data, model data, and tag data
0x05F0 | uint32 | Magic Must be 1197895540 ("Gfot")

*See Compressed cache files

Page 6

Halo: Combat Evolved Map Structure Snowy Mouse

4.2 Cache versions

For reference, here are the cache versions. This is used for verifying if the map is even compatible
with the current engine.

Version | Game

5 Xbox

6 Demo

7 PC / CEA (MCC pre-Season 7, Xbox 360)
13 CEA (MCC post-Season 7)

609 Halo Custom Edition

Additional cache versions are used for later games (e.g. Halo 2 Vista uses version 8). For
the sake of simplicity, only Halo: Combat Evolved cache versions will be listed here.

4.3 Resource map header structure

Although not technically a cache file, resource maps can contain tags on Halo Custom
Edition.

Offset | Type | Name Description

0x0000 | uint32 | Type O0=bitmaps, 1=sounds, 2=loc
0x0004 | uint32 | Paths offsets File offset to the path strings
0x0008 | uint32 | Resource offset | File offset of the resource array
0x000C | uint32 | Resource count | Number of resources

4.3.1 Resource

Each individual resource is listed like this, with 12 bytes per resource in an array.

Note that the path offset is not a file offset. To get the file offset, add the "Paths offset”
value from the header.

Offset \ Type \ Name \ Description
0x0000 | uint32 | Path offset Offset to the null terminated path from "Paths offset”
0x0004 | uint32 | Data size Size of the resource in bytes

0x0008 | uint32 | Data file offset | File offset to the data of the resource

Page 7

Halo: Combat Evolved Map Structure Snowy Mouse

4.4 Compressed cache files

For some versions of the game, cache files are compressed. This includes the Xbox version
as well certain files in Halo: Combat Evolved Anniversary.

4.4.1 Xbox compression

The Xbox uses DVDs. These are limited in capacity (4.7 or 8.5 GB for a dual-layered disc),
thus compression is often utilized to fit as much data the disc as possible. Also, the DVD
drive is fairly slow, being only a few megabytes per second, and it can carry a high latency.
As you can imagine, loading data directly from it can be quite slow.

To get around this, the Xbox has three cache partition for its games on the hard drive. It
is here where Halo: Combat Evolved stores its uncompressed maps as well as some of the
game state data.

Xbox maps are compressed using a single zlib stream of everything after the header. The
header is then copied to a cache on disk along with the uncompressed data (the cache is
reserved to a fixed size across several files on the cache partition), and then the game reads
the data from here. The "scenario type” field in the header indicates which reserved file to
decompress to. These correspond to build 2276 (english NTSC):

Value ‘ Type ‘ Size ‘ Number of caches
0 Single Player | 278 MiB | 2
1 Multiplayer 471 MiB | 3
2 User Interface | 35 MiB | 1

If it's set to O (singleplayer), it will use one of the two 278 MiB caches. If it's set to 1 (multiplayer),
it will use one of the three 47 MiB caches. Lastly, if it's set to 2, it will use the 35 MiB
cache.

With this, ui.map only ever has to be decompressed once in a gameplay session. The last

two Single Player maps you played also do not have to be re-decompressed, allowing you to
quickly go back to the last level or resume a checkpoint without a long wait time. Multiplayer
maps obviously get the most since it's very easy to play several multiplayer maps.

4.4.2 CEA compression

CEA's Saber3D files are compressed in chunks. Prior to an update, so were maps. These
archives started with the chunk count followed by file offsets to each chunk. Each chunk
started with the decompressed size of the chunk followed by the zlib stream. By doing this,
compression and decompression can be threaded, and you can do random reads from the
file. However, compression ratio is worse when you do this, and if doing this to a map,
compressing the header made it so the map could not be identified as a cache file or parsed
without first decompressing the header.

Page 8

Halo: Combat Evolved Map Structure Snowy Mouse

5 Tag data

This is the tag data section. On Xbox, this also contains model data, where on later versions,
model data is stored in a separate location of the map. BSP data is stored separately but

loaded into this region of memory dynamically by the game (one BSP at a time), and information
on how to access that is stored in the scenario tag through the structure BSP array (most

of this is normally padding in a .scenario tag file but is set when the scenario is compiled

into a cache file).

5.1 Tag data address and size

Halo PC and demo both have a 23 MiB tag space, where the Xbox version has a 22 MiB
tag space (larger on later versions of the game). CEA, on the other hand, has a 31 MiB tag
space.

To translate a pointer to a file offset, add the file offset of a known memory address and
subtract this known memory address.

In Halo PC, tag data is loaded at 0x40440000 (or 0x4BF10000). On Xbox, tag data is
loaded at 0x803A6000. On CEA, the tag data can be loaded anywhere, and it uses the tag
data address minus the size of the header (0x28) to determine the base address.

For example: To find the file offset of 0x40440028 on Halo PC, subtract 0x40440000 and
add the file offset of the tag data.

5.2 BSP header

BSP tags have a header that points to the actual BSP tag. There are other fields here, too,
but Halo PC only uses the tag pointer. The Xbox version uses the other fields, and some
CEA maps use some of these fields, too.

Offset | Type | Name Description

0x0000 | void* | Tag pointer Pointer to the base struct of the BSP tag
0x0004 | uint32 | Lightmap material count | Number of lightmap materials

0x0008 | void* | Rendered vertices Pointer to an array of rendered vertices
0x000C | uint32 | Lightmap material count | Number of lightmap materials repeated
0x0010 | void* | Lightmap vertices Pointer to an array of lightmap vertices
0x0014 | uint32 | Tag FourCC FourCC of the tag (usually "sbsp”)

Page 9

Halo: Combat Evolved Map Structure

Snowy Mouse

5.3 Header structure

Beginning the tag data is another header. This is different between the Xbox version and
later versions of the game, but these first five fields are the same:

Offset | Type | Name Description

0x0000 | void* | Tag array pointer | This is the pointer to the tag array

0x0004 | uint32 | Checksum This is a checksum of the tag files used in the map
0x0008 | uint32 | Scenario ID Tag ID of the scenario tag

0x000C | uint32 | Tag count Number of tags in the map

0x0010 | uint32 | Model part count | Number of model parts in the map

5.3.1 New header structure

Since the PC version, these are the values after the first five values of the header:

Offset | Type | Name Description

0x0014 | uint32 | Model data file offset | This is the file offset to the vertex data
0x0018 | uint32 | Model part count This is a repeat of the model part count
0x001C | uint32 | Vertex data size Size of the vertex data in bytes

0x0020 | uint32 | Model data size Total size of the model data in bytes
0x0024 | uint32 | Magic Typically equal to 1952540531 ("tags")

5.3.2 Xbox header structure

The Xbox version header uses pointers instead of file offsets since the model data is also in
the tag data.

Offset | Type | Name Description

0x0014 | void* | Vertex data pointer | This is a pointer to the vertex data
0x0018 | uint32 | Model part count This is a repeat of the model part count
0x001C | void* | Triangle data pointer | This is a pointer to the triangle data
0x0020 | uint32 | Magic Typically equal to 1952540531 ("tags")

Page 10

Halo: Combat Evolved Map Structure Snowy Mouse

5.4 Tag

A tag is a singular asset used in a map. It is the fundamental building block used to make a
map. Pretty much everything that makes a map a map is because of tags, and this is what
makes the Halo engine so unique. Each tag in the tag array is comprised of this 32 byte
structure:

Offset | Type | Name Description

0x0000 | uint32 | Primary fourCC Primary fourCC of the tag

0x0004 | uint32 | Secondary fourCC | Secondary fourCC, if present, or OxFFFFFFFF
0x0008 | uint32 | Tertiary fourCC Tertiary fourCC, if present, or OxFFFFFFFF
0x000C | uint32 | Tag ID ID of the tag

0x0010 | char* | Tag path pointer | Address of the null terminated path of the tag
0x0014 | void* | Tag data pointer | Address of the tag data

0x0014 | uint32 | Resource index Index of tag data if external (Custom Edition only)
0x0018 | uint32 | External If 1, tag data is external (Custom Edition only)

You may notice there are two values at 0x0014. This is because Halo Custom Edition supports
using external tags. This number is the index in the resource map in which the tag data

is located, and on startup, Halo will load this tag into memory and change this to a valid
pointer.

The only exception to this is sound tags which are, instead, matched by tag path. The

reason for this is likely due to the fact that sound tags can reference other sound tags (i.e.
promotional sounds), and doing this in a resource map in the current implementation isn't
possible. When Halo finds an indexed sound tag, it will then set the pointer of the permutations
array of the sound tag to the one loaded in memory. External data like this is copied directly
into tag data on Halo Custom Edition.

BSP tags also work differently. The tag data pointer is not set to anything meaningful

until the BSP data is actually loaded. This pointer is instead read from the scenario tag's
structure BSP array. As mentioned previously, only one BSP can be loaded at a time. To
make it seamless, BSP transitions are usually done in hallways which are duplicated between
both BSPs. You can spot a BSP transition when the game says "Loading... done”, or you
may also notice the subtle change in lighting.

A common misconception is that, on Halo Custom Edition, nearly maxing out the tag space
causes crashing, but tag space usage alone does not cause crashing. Rather, if any external
tags do not fit the remaining tag space (which is possible if the map was compiled for a
different set of resource maps than is being used by the user), the game will crash as it
starts overwriting tag data with BSP data. For example, font tags with more characters
can be megabytes larger than expected, as is common with languages that use a large set
of characters such as Chinese. Playing a map that goes near the limit on the default font
tags that, on an English version of the game, are only a few hundred kilobytes will surely
crash on these games. In fact, even the Spanish version of the game is slightly larger than
English. The only surefire way to prevent a crash from this is to not use external tags. This
may come at the cost of a much larger map as well as no localization for strings, but the
map will technically be more stable.

Page 11

	About the author
	What is a map file?
	Resource maps
	Halo: Combat Evolved Anniversary resource files

	Data types
	Now you're thinking with pointers

	Cache file header
	Header structure
	Demo header structure

	Cache versions
	Resource map header structure
	Resource

	Compressed cache files
	Xbox compression
	CEA compression

	Tag data
	Tag data address and size
	BSP header
	Header structure
	New header structure
	Xbox header structure

	Tag

